Image Modal
        全國(guó)

        熱門(mén)城市 | 全國(guó) 北京 上海 廣東

        華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

        東北地區(qū) | 遼寧 吉林 黑龍江

        華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

        華中地區(qū) | 河南 湖北 湖南

        西南地區(qū) | 重慶 四川 貴州 云南 西藏

        西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

        華南地區(qū) | 廣東 廣西 海南

        • 微 信
          高考

          關(guān)注高考網(wǎng)公眾號(hào)

          (www_gaokao_com)
          了解更多高考資訊

        您現(xiàn)在的位置:首頁(yè) > 高考資源網(wǎng) > 高中教案 > 高一數(shù)學(xué)教案 > 高一數(shù)學(xué)教案:《空間圖形的基本關(guān)系與公理》(3)

        電子課本

        高考真題

        高考模擬題

        高中試卷

        高中課件

        高中教案

        高一數(shù)學(xué)教案:《空間圖形的基本關(guān)系與公理》(3)

        來(lái)源:網(wǎng)絡(luò)資源 2021-09-10 15:39:52


          考點(diǎn)五  共線的判斷與證明:常見(jiàn)題型是三點(diǎn)共線。

          例6. 如圖,O1是正方體ABCD-A1B1C1D1的面A1B1C1D1的中心,M是對(duì)角線A1C和截面B1D1A的交點(diǎn),求證:O1、M、A三點(diǎn)共線。

          證明:連結(jié)AC.因?yàn)锳1C1∩B1D1=O1,B1D1 平面B1D1A,A1C1 AA1C1C,所以O(shè)1∈平面B1D1A且O1∈AA1C1C。同理可知,M∈平面B1D1A且M∈AA1C1C;A∈平面B1D1A且A∈AA1C1C。所以,O1、M、A三點(diǎn)在平面B1D1A和AA1C1C的交線上,故O1、M、A三點(diǎn)共線。

          說(shuō)明:證明三線共點(diǎn)問(wèn)題的常見(jiàn)思路是證明第三點(diǎn)在前兩點(diǎn)所確定的直線上;或者證明三點(diǎn)是兩相交平面的公共點(diǎn),從而在這兩個(gè)平面的交線上。

          考點(diǎn)六  共面問(wèn)題的判斷與證明:此類(lèi)題型常見(jiàn)的是四點(diǎn)共面或三線共面,如證明某個(gè)圖形是平面圖形。

          例7. 如圖,在空間四邊形ABCD中,E、F分別是AB、AD的中點(diǎn),G、H分別是BC、CD上的點(diǎn),且CG=BC/3,CH=DC/3。求證:?E、F、G、H四點(diǎn)共面;?直線FH、EG、AC共點(diǎn)。

          證明:?如圖,連結(jié)HG,EF。在△ABD中,E、F分別為AB、AD中點(diǎn),故EF是△ABD的中位線,故EF∥BD。在△CBD中,CG=BC/3,CH=DC/3,故GH∥BD,故EF∥GH,從而GH、EF可確定一個(gè)平面,即G、H、E、F四點(diǎn)共面。

          由于E、F、G、H四點(diǎn)共面,且FH與EG不平行,故相交,記交點(diǎn)為M,則M∈FH,F(xiàn)H 面ACD,故M∈面ACD;M∈EG,EG 面ABC,故M∈面ABC。從而M是面ACD和面ABC的公共點(diǎn),由公理3可知,M在這兩個(gè)平面的交線AC上,從而FH、EG、AC三線共點(diǎn)。

          說(shuō)明:共面問(wèn)題的常用的處理方法是利用平面的基本性質(zhì)公理2及三個(gè)推論,先證明部分元素確定一個(gè)平面,再證剩下的元素也在此平面上;有時(shí)也可先證部分元素共面,剩下的元素共面,然后證明這兩個(gè)平面重合(此時(shí)也可用反證法)。

         

               相關(guān)推薦:


          高一數(shù)學(xué)教案匯總


          高一數(shù)學(xué)教案:兩角和差的余弦公式

         

        最新高考資訊、高考政策、考前準(zhǔn)備、志愿填報(bào)、錄取分?jǐn)?shù)線等

        高考時(shí)間線的全部重要節(jié)點(diǎn)

        盡在"高考網(wǎng)"微信公眾號(hào)

        收藏

        京ICP備10033062號(hào)-2 北京市公安局海淀分局備案編號(hào):1101081950

        違法和不良信息舉報(bào)電話:010-56762110     舉報(bào)郵箱:wzjubao@tal.com

        高考網(wǎng)版權(quán)所有 Copyright © 2005-2022 www.ledzixun.com . All Rights Reserved

        知識(shí)商店
        主站蜘蛛池模板: 久久精品这里有| 吃奶呻吟打开双腿做受动态图| 两性高清性色生活片性高清←片| 欧美日韩在线视频一区| 国产69精品久久久久9999apgf| 青青草原免费在线| 女人和拘做受口述| 久久亚洲精品中文字幕| 欧美日韩一区二区在线| 六月天丁香婷婷| 里番acg全彩本子在线观看| 国产精品视频免费| а√天堂资源地址在线官网| 日本欧美在线观看| 亚洲人成综合在线播放| 男人天堂免费视频| 国产一级二级在线| 国内精品免费麻豆网站91麻豆 | 少妇挑战三个黑人惨叫4p国语| 亚洲AV无码一区二区二三区软件| 波多野结衣新婚被邻居| 变态拳头交视频一区二区| 麻豆自创视频在线观看| 国产精品无码午夜福利| bt自拍另类综合欧美| 成人国产午夜在线视频| 久久午夜无码鲁丝片直播午夜精品| 欧美人与动人物姣配xxxx| 亚洲精品美女久久久久9999| 精品国产污污免费网站| 国产一国产一级毛片视频在线 | 日本精a在线观看| 久久99中文字幕| 果冻传媒app下载网站| 国产男女猛烈无遮挡免费网站| 99自拍视频在线观看| 怡红院色视频在线| 久久久久久国产精品视频| 最近中文字幕在线mv视频7 | 内射极品少妇XXXXXHD| 色阁阁日韩欧美在线|