全國

        熱門城市 | 全國 北京 上海 廣東

        華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

        東北地區(qū) | 遼寧 吉林 黑龍江

        華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

        華中地區(qū) | 河南 湖北 湖南

        西南地區(qū) | 重慶 四川 貴州 云南 西藏

        西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

        華南地區(qū) | 廣東 廣西 海南

        • 微 信
          高考

          關(guān)注高考網(wǎng)公眾號

          (www_gaokao_com)
          了解更多高考資訊

        首頁 > 高考總復(fù)習(xí) > 高考數(shù)學(xué)復(fù)習(xí)方法 > 高中數(shù)學(xué)必修二知識點立體幾何圓

        高中數(shù)學(xué)必修二知識點立體幾何圓

        2019-01-30 19:36:56三好網(wǎng)

          (1)直線的傾斜角

          定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

          (2)直線的斜率

          ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時,。當(dāng)時,;當(dāng)時,不存在。

          ②過兩點的直線的斜率公式:

          注意下面四點:(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

          (2)k與P1、P2的順序無關(guān);

          (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;

          (4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到。

          立體幾何初步

          1、柱、錐、臺、球的結(jié)構(gòu)特征

          (1)棱柱:

          定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

          分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

          表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱

          幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

          (2)棱錐

          定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

          分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

          表示:用各頂點字母,如五棱錐

          幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

          (3)棱臺:

          定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

          分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等

          表示:用各頂點字母,如五棱臺

          幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點

          (4)圓柱:

          定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

          幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。

          (5)圓錐:

          定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體

          幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。

          (6)圓臺:

          定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

          幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。

          (7)球體:

          定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

          幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

          2、空間幾何體的三視圖

          定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

          注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

          俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

          側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

          3、空間幾何體的直觀圖——斜二測畫法

          斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

          ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

          圓的方程

          1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

          2、圓的方程

          (1)標(biāo)準(zhǔn)方程(),

          ()圓心(),半徑為r;

          (2)一般方程

          當(dāng)時(),方程表示圓,此時圓心為(),半徑為()

          當(dāng)時(),表示一個點;當(dāng)時(),方程不表示任何圖形。

          (3)求圓方程的方法:

          一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨立條件,

          若利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

          另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。

          3、直線與圓的位置關(guān)系:

          直線與圓的位置關(guān)系有相離,相切,相交三種情況,基本上由下列兩種方法判斷:

          (1)設(shè)直線(),圓(),圓心()到l的距離為(),則有();

          (2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

          (3)過圓上一點的切線方程:

          ①圓x2+y2=r2,圓上一點為(x0,y0),則過此點的切線方程為(課本命題).

          ②圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2(課本命題的推廣).

          4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

          設(shè)圓(),

          兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

          當(dāng)()時兩圓外離,此時有公切線四條;

          當(dāng)()時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;

          當(dāng)()時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

          當(dāng)()時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;

          當(dāng)()時,兩圓內(nèi)含;當(dāng)時,為同心圓。

          (3)直線方程

          ①點斜式:

          直線斜率k,且過點

          注意:當(dāng)直線的斜率為0°時,k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

          ②斜截式:,直線斜率為k,直線在y軸上的截距為b

          ③兩點式:(

          )直線兩點,

          ④截矩式:

          其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為。

          ⑤一般式:(A,B不全為0)

          ⑤一般式:(A,B不全為0)

          注意:○1各式的適用范圍

          ○2特殊的方程如:平行于x軸的直線:

          (b為常數(shù));平行于y軸的直線:

          (a為常數(shù));

          (4)直線系方程:即具有某一共同性質(zhì)的直線

          (一)平行直線系

          平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

          (二)過定點的直線系

          (ⅰ)斜率為k的直線系:,直線過定點;

          (ⅱ)過兩條直線,的交點的直線系方程為(為參數(shù)),其中直線不在直線系中。

          (5)兩直線平行與垂直

          當(dāng),時,;

          注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。

          (6)兩條直線的交點

          相交

          交點坐標(biāo)即方程組的一組解。方程組無解;方程組有無數(shù)解與重合

          (7)兩點間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個點,則

          (8)點到直線距離公式:一點到直線的距離

          (9)兩平行直線距離公式:在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進行求解。

        [標(biāo)簽:高考備考 復(fù)習(xí)方法]

        分享:

        高考院校庫(挑大學(xué)·選專業(yè),一步到位!)

        高考院校庫(挑大學(xué)·選專業(yè),一步到位!)

        高校分?jǐn)?shù)線

        專業(yè)分?jǐn)?shù)線

        日期查詢
        • 歡迎掃描二維碼
          關(guān)注高考網(wǎng)微信
          ID:gaokao_com

        • 👇掃描免費領(lǐng)
          近十年高考真題匯總
          備考、選科和專業(yè)解讀
          關(guān)注高考網(wǎng)官方服務(wù)號


        主站蜘蛛池模板: 激情按摩系列片AAAA| 在线视频国产网址你懂的在线视频| 校花被折磨阴部流水| 免费视频爱爱太爽了| 免费能直接在线观看黄的视频| 奇米777在线视频| 久久久亚洲欧洲日产国码aⅴ| 欧美色图亚洲激情| 又黄又爽一线毛片免费观看| 国产欧美日韩另类一区乌克兰| 夜夜爽夜夜叫夜夜高潮漏水| 中文字幕日韩理论在线| 欧洲精品码一区二区三区| 亚洲视频在线观看视频| 综合人妻久久一区二区精品| 国产精品免费一区二区三区| 一二三四免费观看在线电影中文| 日本高清视频免费观看| 亚洲成a人一区二区三区| 第一章岳婿之战厨房沈浩| 国产午夜影视大全免费观看| 18成禁人视频免费网站| 女人是男人的女未来1分49分| 久久99国产精品久久99小说| 果冻麻豆星空天美精东影业 | 国产另类的人妖ts视频| 91蝌蚪在线播放| 婷婷综合缴情亚洲狠狠图片| 久久777国产线看观看精品| 欧美xxxxx性喷潮| 亚洲精品无码国产| 精品久久亚洲中文无码| 国产一区二区三区欧美| 黄在线观看网站| 国产精品久久国产三级国不卡顿| 99久久久国产精品免费牛牛四川| 无翼乌无遮挡h肉挤奶百合| 久久综合九色综合欧美就去吻| 欧美日韩亚洲第一页| 亚洲黄网在线观看| 精品一区二区三区在线视频观看|