高三數學教案五
來源:網絡整理 2024-12-08 20:44:59
高三這年,其重要性,是不言而喻的。高考網陸續的整理了一些全國各省市優秀教案供廣大考生參考。
教學目標:
1.知識與技能目標:理解等差數列的概念,了解等差數列的通項公式的推導過程及思想,掌握并會用等差數列的通項公式,初步引入“數學建模”的思想方法并能運用。
2.過程與方法目標:培養學生觀察分析、猜想歸納、應用公式的能力;在領會函數與數列關系的前提下,滲透函數、方程的思想。
3.情感態度與價值觀目標:通過對等差數列的研究培養學生主動探索、勇于發現的'求知的精神;養成細心觀察、認真分析、善于總結的良好思維習慣。
教學重點:
等差數列的概念及通項公式。
教學難點:
(1)理解等差數列“等差”的特點及通項公式的含義。
(2)等差數列的通項公式的推導過程及應用。
教具:
多媒體、實物投影儀
教學過程:
一、復習引入:
1.回憶上一節課學習數列的定義,請舉出一個具體的例子。表示數列有哪幾種方法——列舉法、通項公式、遞推公式。我們這節課接著學習一類特殊的數列——等差數列。
2.由生活中具體的數列實例引入
(1).國際奧運會早期,撐桿跳高的記錄近似的由下表給出:
你能看出這4次撐桿條跳世界記錄組成的數列,它的各項之間有什么關系嗎?
(2)某劇場前10排的座位數分別是:
48、46、44、42、40、38、36、34、32、30
引導學生觀察:數列①、②有何規律?
引導學生發現這些數字相鄰兩個數字的差總是一個常數,數列①先左到右相差0.2,數列②從左到右相差-2。
二、新課探究,推導公式
1.等差數列的概念
如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列,這個常數叫做等差數列的公差,通常用字母d來表示。
強調以下幾點:
① “從第二項起”滿足條件;
②公差d一定是由后項減前項所得;
③每一項與它的前一項的差必須是同一個常數(強調“同一個常數” );
所以上面的2、3都是等差數列,他們的公差分別為0.20,-2。
三、應用舉例
例1求等差數列,12,8,4,0,…的第10項;20項;第30項;
例2 -401是不是等差數列-5,-9,-13,…的項?如果是,是第幾項?
四、反饋練習
P293練習A組第1題和第2題(要求學生在規定時間內做完上述題目,教師提問)。
五、歸納小結提煉精華
(由學生總結這節課的收獲)
1.等差數列的概念及數學表達式.
強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數
2.等差數列的通項公式an= a1+(n-1) d會知三求一
六、課后作業運用鞏固
必做題:課本P284習題A組第3,4,5題
相關推薦:
最新高考資訊、高考政策、考前準備、志愿填報、錄取分數線等
高考時間線的全部重要節點
盡在"高考網"微信公眾號