全國

        熱門城市 | 全國 北京 上海 廣東

        華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

        東北地區(qū) | 遼寧 吉林 黑龍江

        華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

        華中地區(qū) | 河南 湖北 湖南

        西南地區(qū) | 重慶 四川 貴州 云南 西藏

        西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

        華南地區(qū) | 廣東 廣西 海南

        • 微 信
          高考

          關(guān)注高考網(wǎng)公眾號

          (www_gaokao_com)
          了解更多高考資訊

        首頁 > 高考總復習 > 高考數(shù)學復習方法 > 2007年新課程標準數(shù)學科(理科)考試大綱(1)

        2007年新課程標準數(shù)學科(理科)考試大綱(1)

        2007-01-06 11:41:03本站原創(chuàng)

        2007年普通高等學校招生全國統(tǒng)一考試
        新課程標準數(shù)學科(理科)考試大綱

        I.考試性質(zhì)
        普通高等學校招生全國統(tǒng)一考試是合格的高中畢業(yè)生和具有同等學力的考生參加的選拔性考試。高等學校根據(jù)考生成績,按已確定的招生計劃,德、智、體全面衡量,擇優(yōu)錄取。因此,高考應(yīng)具有較高的信度、效度,必要的區(qū)分度和適當?shù)碾y度。

        II.考試內(nèi)容
        根據(jù)普通高等學校對新生文化素質(zhì)的要求,依據(jù)中華人民共和國教育部2003年頒布的《普通高中課程方案(實驗)》(教基[2003]6號)和《普通高中數(shù)學課程標準(實驗)》(2003年4月第1版,人民教育出版社出版)的必修課程,選修課程系列2和系列4的內(nèi)容,確定理工類高考數(shù)學科考試內(nèi)容。
        數(shù)學科的考試,按照“考查基礎(chǔ)知識的同時,注重考查能力”的原則,確立以能力立意命題的指導思想,將知識、能力和素質(zhì)融為一體,全面檢測考生的數(shù)學素養(yǎng)。
        數(shù)學科考試,要發(fā)揮數(shù)學作為主要基礎(chǔ)學科的作用,要考查中學的基礎(chǔ)知識、基本技能的掌握程度,要考查對數(shù)學思想方法和數(shù)學本質(zhì)的理解水平,要考查進入高等學校繼續(xù)學習的潛能。

        一、考核目標與要求
        1.知識要求
        知識是指《普通高中數(shù)學課程標準(實驗)》(以下簡稱《課程標準》)中所規(guī)定的必修課程、選修課程系列2和系列4的數(shù)學概念、性質(zhì)、法則、公式、公理、定理以及由其內(nèi)容反映的數(shù)學思想方法,還包括按照一定程序與步驟進行運算,處理數(shù)據(jù),繪制圖表等基本技能。
        各部分知識整體要求及其定位參照《課程標準》相應(yīng)模塊的有關(guān)說明。
        對知識的要求依次是了解、理解、掌握三個層次。
        (1)了解:要求對所列知識的含義有初步的、感性的認識,知道這一知識內(nèi)容是什么,按照一定的程序和步驟照樣模仿,并能(或會)在有關(guān)的問題中識別和認識它。
        這一層次所涉及的主要行為動詞有:了解,知道、識別、模仿,會求、會解等。
        (2)理解:要求對所列知識內(nèi)容有較深刻的認識,知道知識間的邏輯關(guān)系,能夠?qū)λ兄R作正確的描述說明,用數(shù)學語言表達,利用所學的知識內(nèi)容對有關(guān)問題作比較、判別、討論,有利用所學知識解決簡單問題的能力。
        這一層次所涉及的主要行為動詞有:描述,說明,表達,推測、想像,比較、判別,初步應(yīng)用等。
        (3)掌握:要求對所列的知識內(nèi)容能夠推導證明,利用所學知識對問題能夠進行分析、研究、討論,并且加以解決。
        這一層次所涉及的主要行為動詞有:掌握、導出、分析,推導、證明,研究、討論、運用、解決問題等。

        2.能力要求
        能力是指空間想像能力、抽象概括能力、推理論證能力、運算求解能力、數(shù)據(jù)處理能力以及應(yīng)用意識和創(chuàng)新意識。
        (1)空間想像能力:能根據(jù)條件作出正確的圖形,根據(jù)圖形想像出直觀形象;能正確地分析出圖形中基本元素及其相互關(guān)系;能對圖形進行分析、組合;會運用圖形與圖表等手段形象地揭示問題的本質(zhì)。
        空間想像能力是對空間形式的觀察、分析、抽象的能力。主要表現(xiàn)為識圖、畫圖和對圖形的想像能力,識圖是指觀察研究所給圖形中幾何元素之間的相互關(guān)系;畫圖是指將文字語言和符號語言轉(zhuǎn)化為圖形語言,以及對圖形添加輔助線或?qū)D形進行各種變換,對圖形的想像主要包括有圖想圖和無圖想圖兩種,是空間想像能力高層次的標志。
        (2)抽象概括能力:抽象是指舍棄事物非本質(zhì)的屬性,揭示其本質(zhì)的屬性;概括是指把僅僅屬于某一類對象的共同屬性區(qū)分出來的思維過程,抽象和概括是相互聯(lián)系的,沒有抽象就不可能有概括,而概括必須在抽象的基礎(chǔ)上得出某一觀點或作出某項結(jié)論。
        抽象概括能力就是從具體的、生動的實例,在抽象概括的過程中,發(fā)現(xiàn)研究對象的本質(zhì);從給定的大量信息材料中,概括出一些結(jié)論,并能應(yīng)用于解決問題或作出新的判斷。
        (3)推理論證能力:推理是思維的基本形式之一,它由前提和結(jié)論兩部分組成,論證是由已有的正確的前提到被論證的結(jié)論正確的一連串的推理過程,推理既包括演繹推理,也包括合情推理,論證方法既包括按形式劃分的演繹法和歸納法,也包括按思考方法劃分的直接證法和間接證法,一般運用合情推理進行猜想,再運用演繹推理進行證明。
        中學數(shù)學的推理論證能力是根據(jù)已知的事實和已獲得的正確數(shù)學命題來論證某一數(shù)學命題真實性初步的推理能力。
        (4)運用求解能力:會根據(jù)法則、公式進行正確運算,變形和數(shù)據(jù)處理,能根據(jù)問題的條件,尋找與設(shè)計合理、簡捷的運算途徑;能根據(jù)要求對數(shù)據(jù)進行估計和近似計算。
        運算求解能力是思維能力和運算技能的結(jié)合,運算包括對數(shù)字的計算、估值和近似計算,對式子的組合變形與分解變形,對幾何圖形各幾何量的計算求解等,運算能力包括分析運算條件,探究運算方向、選擇運算公式、確定運算程序等一系列過程中的思維能力,也包括在實施運算過程中遇到障礙而調(diào)整運算的能力。
        (5)數(shù)據(jù)處理能力:會收集數(shù)據(jù)、整理數(shù)據(jù)、分析數(shù)據(jù),能從大量數(shù)據(jù)中抽取對研究問題有用的信息,并作出判斷。
        數(shù)據(jù)處理能力主要依據(jù)統(tǒng)計或統(tǒng)計案例中的方法對數(shù)據(jù)進行整理、分析,并解決給定的實際問題。
        (6)應(yīng)用意識:能綜合應(yīng)用所學數(shù)學知識、思想和方法解決問題,包括解決在相關(guān)學科、生產(chǎn)、生活中簡單的數(shù)學問題;能理解對問題陳述的材料,并能所提供的信息資料進行歸納、整理和分類,將實際問題抽象為數(shù)學問題,建立數(shù)學模型;應(yīng)用相關(guān)的數(shù)學方法解決問題并加以驗證,并能用數(shù)學語言正確地表達和說明。主要過程是依據(jù)現(xiàn)實的生活背景,提煉相關(guān)的數(shù)量關(guān)系,構(gòu)造數(shù)學模型,將現(xiàn)實問題轉(zhuǎn)化為數(shù)學問題,并加以解決。
        (7)創(chuàng)新意識:能發(fā)現(xiàn)問題、提出問題,綜合與靈活地應(yīng)用所學的數(shù)學知識、思想方法,選擇有效的方法和手段分析信息,進行獨立的思考、探索和研究,提出解決問題的思路,創(chuàng)造性地解決問題。
        創(chuàng)新意識是理性思維的高層次表現(xiàn),對數(shù)學問題的“觀察、猜測、抽象、概括、證明”,是發(fā)現(xiàn)問題和解決問題的重要途徑,對數(shù)學知識的遷移、組合、融會的程度越高,顯示出的創(chuàng)新意識也就越強。

        3.個性品質(zhì)要求
        個性品質(zhì)是指考生個體的情感、態(tài)度和價值觀,具有一定的數(shù)學視野,認識數(shù)學的科學價值和人文階段,崇尚數(shù)學的理性精神,形成審慎的思維習慣,體會數(shù)學的美學意義。
        要求考生克服緊張情緒,以平和的心態(tài)參加考試,合理支配考試時間,以實事求是的科學態(tài)度解答試題,樹立戰(zhàn)勝困難的信心,體現(xiàn)鍥而不舍的精神。

        4.考查要求
        數(shù)學學科的系統(tǒng)性和嚴密性決定了數(shù)學知識之間深刻的內(nèi)在聯(lián)系,包括各部分知識在各自的發(fā)展過程中的縱向聯(lián)系和橫向聯(lián)系,要善于從本質(zhì)上抓住這些聯(lián)系,進而通過分類、梳理、綜合,構(gòu)建數(shù)學試卷的結(jié)構(gòu)框架。
        (1)對數(shù)學基礎(chǔ)知識的考查,既要全面又要突出重點,對于支撐學科知識體系的重點內(nèi)容,要占有較大的比例,構(gòu)成數(shù)學試卷的主體,注重學科的內(nèi)在聯(lián)系和知識的綜合性,不刻意追求知識的覆蓋面,從學科的整體高度和思維價值的高度考慮問題,在知識網(wǎng)絡(luò)交匯點設(shè)計試題,使對數(shù)學基礎(chǔ)知識的考查達到必要的深度。
        (2)對數(shù)學思想方法的考查是對數(shù)學知識在更高層次上的抽象和概括的考查,考查時必須要與數(shù)學知識相結(jié)合,通過數(shù)學知識的考查,反映考生對數(shù)學思想方法的掌握程度。
        (3)對數(shù)學能力的考查,強調(diào)“以能力立意”,就是以數(shù)學知識為載體,從問題入手,把握學科的整體意義,用統(tǒng)一的數(shù)學觀點組織材料,側(cè)重體現(xiàn)對知識的理解和應(yīng)用,尤其是綜合和靈活的應(yīng)用,以此來檢測考生將知識遷移到不同情境中去的能力,從而檢測出考生個體理性思維的廣度和深度,以及進一步學生的潛能。
        對能力的考查要全面考查能力,強調(diào)綜合性、應(yīng)用性,并要切合學生實際。對推理論證能力和抽象概括能力的考查貫穿于全卷,是考查的重點,強調(diào)其科學性、嚴謹性、抽象性。對空間想象能力的考查,主要體現(xiàn)在對文字語言、符號語言及圖形語言的互相轉(zhuǎn)化,對運算求解能力的考查主要是算法和推理的考查,考查以代數(shù)運算為主,數(shù)據(jù)處理能力的考查主要是運用概括統(tǒng)計的基本方法和思想解決實際問題的能力。
        (4)對應(yīng)用意識的考查主要采用解決應(yīng)用問題的形式,命題時要堅持“貼近生活,背景公平,控制難度”的原則,試題設(shè)計要切合中學數(shù)學的實際,考慮學生的年齡特點和實踐經(jīng)驗,使數(shù)學應(yīng)用問題的難度符合考生的水平。
        (5)對創(chuàng)新意識的考查是對高層次理性思維的考查,在考試中創(chuàng)設(shè)新穎的問題情境,構(gòu)造有一定深度和廣度的數(shù)學問題,要注重問題的多樣化,體現(xiàn)思維的發(fā)散性,精心設(shè)計考查數(shù)學主體內(nèi)容、體現(xiàn)數(shù)學素質(zhì)的試題;反映數(shù)、形運動變化的試題;研究型、探索型、開放性的試題。
        數(shù)學科的命題,在考查基礎(chǔ)知識的基礎(chǔ)上,注重對數(shù)學思想方法的考查,注重對數(shù)學能力的考查,展現(xiàn)數(shù)學的科學價值和人文價值,同時兼顧試題的基礎(chǔ)性、綜合性和現(xiàn)實性,重視試題間的層次性,合理調(diào)控綜合程度,堅持多角度、多層次的考查,努力實現(xiàn)全面考查綜合數(shù)學素養(yǎng)的要求。

        二、考試范圍與要求
        本部分包括必考內(nèi)容和選考內(nèi)容兩部分,必考內(nèi)容為《課程標準》的必修內(nèi)容和選修系列2的內(nèi)容,選考內(nèi)容為《課程標準》的選修系列4的部分專題,各省區(qū)自行決定選考專題的內(nèi)容和數(shù)量。

        (一)必考內(nèi)容與要求
        1.集合
        (1)集合的含義與表示
        ①了解集合的含義、元素與集合的“屬于”關(guān)系。
        ②能用自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題。
        (2)集合間的基本關(guān)系
        ①理解集合之間包含與相等的含義,能區(qū)別給定集合的子集。
        ②在具體情境中,了解全集與空集的含義。
        (3)集合的基本運算
        ①理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集。
        ②理解在給定集合中一個子集的補集的含義,會求給定子集的補集。
        ③能使用韋恩圖(Venn)表達集合的關(guān)系及運算。

        2.函數(shù)概念與基本初等函數(shù)I(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù))
        (1)①了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念。
        ②在實際情境中,會根據(jù)不同的需要選擇恰當?shù)姆椒ǎㄈ鐖D象法、列表法、解析法)表示函數(shù)。
        ③了解簡單的分段函數(shù),并能簡單應(yīng)用。
        ④理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義;結(jié)合具體函數(shù),了解函數(shù)奇偶性的含義。
        ⑤會運用函數(shù)圖像理解和研究函數(shù)的性質(zhì)。
        (2)指數(shù)函數(shù)
        ①了解指數(shù)函數(shù)模型的實際背景。
        ②理解有理指數(shù)冪的含義,了解實數(shù)指數(shù)冪的意義,掌握冪的運算。
        ③理解指數(shù)函數(shù)的概念,并理解指數(shù)函數(shù)的單調(diào)性與函數(shù)圖像通過的特殊點。
        ④知道指數(shù)函數(shù)是一類重要的函數(shù)模型。
        (3)對數(shù)函數(shù)
        ①理解對數(shù)的概念及其運算性質(zhì),知道用換底公式能將一般對數(shù)轉(zhuǎn)化成自然對數(shù)或常用對數(shù);了解對數(shù)在簡化運算中的作用。
        ②理解對數(shù)函數(shù)的概念;理解對數(shù)函數(shù)的單調(diào)性,掌握函數(shù)圖像通過的特殊點。
        ③知道對數(shù)函數(shù)是一類重要的函數(shù)模型;
        ④了解指數(shù)函數(shù) 與對數(shù)函數(shù) 互為反函數(shù)(a>0,a≠1)。
        (4)冪函數(shù)
        ①了解冪函數(shù)的概念。
        ②結(jié)合函數(shù) 的圖象,了解它們的變化情況。
        (5)函數(shù)與方程
        ①結(jié)合二次函數(shù)的圖像,了解函數(shù)的零點與方程根的聯(lián)系,判斷一元二次方程根的存在性及根的個數(shù)。
        ②根據(jù)具體函數(shù)的圖像,能夠用二分法求相應(yīng)方程的近似解。
        (6)函數(shù)模型及其應(yīng)用
        ①了解指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)的增長特征,知道直線上升、指數(shù)增長、對數(shù)增長等不同函數(shù)類型增長的含義。
        ②了解函數(shù)模型(如指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等在社會中普遍使用的函數(shù)模型)的廣泛應(yīng)用。

        3.立體幾何初步
        (1)空間幾何體
        ①認識柱、錐、臺、球及其簡單組合體的結(jié)構(gòu)特征,并能運用這些特征描述現(xiàn)實生活中簡單物體的結(jié)構(gòu)。
        ②能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會用斜二測法畫出它們的直觀圖。
        ③會用平行投影與中心投影兩種方法,畫出簡單空間圖形的三視圖與直觀圖,了解空間圖形的不同表示形式。
        ④會畫某些建筑物的視圖與直觀圖(在不影響圖形特征的基礎(chǔ)上,尺寸、線條等不作嚴格要求)。
        ⑤了解球、棱柱、棱錐、臺的表面積和體積的計算公式(不要求記憶公式)。
        (2)點、直線、平面之間的位置關(guān)系
        ①理解空間直線、平面位置關(guān)系的定義,并了解如下可以作為推理依據(jù)的公理和定理。
        ◆公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線上所有的點在此平面內(nèi)。
        ◆公理2:過不在同一條直線上的三點,有且只有一個平面。
        ◆公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。
        ◆公理4:平行于同一條直線的兩條直線互相平行。
        ◆定理:空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補。
        ②以立體幾何的上述定義、公理和定理為出發(fā)點,認識和理解空間中線面平行、垂直的有關(guān)性質(zhì)與判定,理解以下判定定理。
        ◆如果平面外一條直線與此平面內(nèi)的一條直線平行,那么該直線與此平面平行。
        ◆如果一個平面內(nèi)的兩條相交直線與另一個平面都平行,那么這兩個平面平行。
        ◆如果一條直線與一個平面內(nèi)的兩條相交直線都垂直,那么該直線與此平面垂直。
        ◆如果一個平面經(jīng)過另一個平面的垂線,那么這兩個平面互相垂直。
        理解以下性質(zhì)定理,并能夠證明。
        ◆如果一條直線與一個平面平行,經(jīng)過該直線的任一個平面與此平面相交,那么這條直線就和交線平行。
        ◆如果兩個平行平面同時和第三個平面相交,那么它們的交線相互平行。
        ◆垂直于同一個平面的兩條直線平行。
        ◆如果兩個平面垂直,那么一個平面內(nèi)垂直于它們交線的直線與另一個平面垂直。
        ③能運用公理、定理和已獲得的結(jié)論證明一些空間位置關(guān)系的簡單命題。

        4.平面解析幾何初步
        (1)直線與方程
        ①在平面直角坐標系中,結(jié)合具體圖形,確定直線位置的幾何要素。
        ②理解直線的傾斜角和斜率的概念,掌握過兩點的直線斜率的計算公式。
        ③能根據(jù)兩條直線的斜率判定這兩條直線平行或垂直。
        ④掌握確定直線位置的幾何要素,掌握直線方程的幾種形式(點斜式、兩點式及一般式),了解斜截式與一次函數(shù)的關(guān)系。
        ⑤能用解方程組的方法求兩直線的交點坐標。
        ⑥掌握兩點間的距離公式、點到直線的距離公式,會求兩條直線間的距離。
        (2)圓與方程
        ①掌握確定圓的幾何要素,掌握圓的標準方程與一般方程。
        ②能根據(jù)給定直線、圓的方程,判斷直線與圓的位置關(guān)系;能根據(jù)給定兩個圓的方程,判斷兩圓的位置關(guān)系。
        ③能用直線和圓的方程解決一些簡單的問題。
        ④初步了解用代數(shù)方法處理幾何問題的思想。
        (3)空間直角坐標系
        ①了解空間直角坐標系,會用空間直角坐標表示點的位置。
        ②會推導空間兩點間的距離公式。

        5.算法初步
        (1)算法的含義、程序框圖
        ①了解算法的含義,了解算法的思想。
        ②理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán)。
        (2)基本算法語句
        理解幾種基本算法語句――輸入語句、輸出語句、賦值語句、條件語句、循環(huán)語句的含義。

        6.統(tǒng)計
        (1)隨機抽樣
        ①理解隨機抽樣的必要性和重要性。
        ②會用簡單隨機抽樣方法從總體中抽取樣本;了解分層抽樣和系統(tǒng)抽樣方法。
        (2)總體估計
        ①了解分布的意義和作用,會列頻率分布表,會畫頻率分布直方圖、頻率折線圖、莖葉圖,理解它們各自的特點。
        ②理解樣本數(shù)據(jù)標準差的意義和作用,會計算數(shù)據(jù)標準差。
        ③能從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標準差),并作出合理的解釋。
        ④會用樣本的頻率分布估計總體分布,會用樣本的基本數(shù)字特征估計總體的基本數(shù)字特征,理解用樣本估計總體的思想。
        ⑤會用隨機抽樣的基本方法和樣本估計總體的思想,解決一些簡單的實際問題。
        (3)變量的相關(guān)性
        ①會作兩個有關(guān)聯(lián)變量數(shù)據(jù)的散點圖,會利用散點圖認識變量間的相關(guān)關(guān)系。
        ②了解最小二乘法的思想,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程。

        7.概率
        (1)事件與概率
        ①了解隨機事件發(fā)生的不確定性和頻率的穩(wěn)定性,了解概率的意義,了解頻率與概率的區(qū)別。
        ②了解兩個互斥事件的概率加法公式。
        (2)古典概型
        ①理解古典概型及其概率計算公式。
        ②會計算一些隨機事件所含的基本事件數(shù)及事件發(fā)生的概率。
        (3)隨機數(shù)與幾何概型
        ①了解隨機數(shù)的意義,能運用模擬方法估計概率。
        ②了解幾何概型的意義。

        8.基本初等函數(shù)II(三角函數(shù))
        (1)任意角的概念、弧度制
        ①了解任意角的概念。
        ②了解弧度制的概念,能進行弧度與角度的互化。
        (2)三角函數(shù)
        ①理解任意角三角函數(shù)(正弦、余弦、正切)的定義。
        ②能利用單位圓中的三角函數(shù)線推導出 的正弦、余弦、正切的誘導公式,能畫出 的圖像,了解三角函數(shù)的周期性。
        ③理解正弦函數(shù)、余弦函數(shù)在區(qū)間[0,2π]的性質(zhì)(如單調(diào)性、最大值和最小值與x軸交點等),理解正切函數(shù)在區(qū)間( )的單調(diào)性。
        ④理解同角三角函數(shù)的基本關(guān)系式:
         
        ⑤了解函數(shù)y=Asin(ωx+)的物理意義;能畫出y=Asin(ωx+)的圖像,了解參數(shù)A、ω、對函數(shù)圖象變化的影響。
        ⑥了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,會用三角函數(shù)解決一些簡單實際問題。

        9.平面向量
        (1)平面向量的實際背景及基本概念
        ①了解向量的實際背景。
        ②理解平面向量的概念及向量相等的含義。
        ③理解向量的幾何表示。
        (2)向量的線性運算
        ①掌握向量加法、減法的運算,并理解其幾何意義。
        ②掌握向量數(shù)乘的運算及其意義,理解兩個向量共線的含義。
        ③了解向量線性運算的性質(zhì)及其幾何意義。
        (3)平面向量的基本定理及坐標表示
        ①了解平面向量的基本定理及其意義。
        ②掌握平面向量的正交分解及其坐標表示。
        ③會用坐標表示平面向量的加法、減法與數(shù)乘運算。
        ④理解用坐標表示的平面向量共線的條件。
        (4)平面向量的數(shù)量積
        ①理解平面向量數(shù)量積的含義及其物理意義。
        ②了解平面向量的數(shù)量積與向量投影的關(guān)系。
        ③掌握數(shù)量積的坐標表達式,會進行平面向量數(shù)量積的運算。
        ④能運用數(shù)量積表示兩個向量的夾角,會用數(shù)量積判斷兩個平面向量的垂直關(guān)系。
        (5)向量的應(yīng)用
        ①會用向量方法解決某些簡單的平面幾何問題。
        ②會用向量方法解決簡單的力學問題與其他一些實際問題。

        10.三角恒等變換
        (1)和與差的三角函數(shù)公式
        ①會用向量的數(shù)量積推導出兩角差的余弦公式。
        ②能利用兩角差的余弦公式導出兩角差的正弦、正切公式。
        ③能利用兩角差的余弦公式導出兩角和的正弦、余弦、正切公式,導出二倍角的正弦、余弦、正切公式,了解它們的內(nèi)在聯(lián)系。
        (2)簡單的三角恒等變換
        能運用上述公式進行簡單的恒等變換(包括導出積化和差、和差化積、平角公式,但對這三組公式不要求記憶)

        11.解三角形
        (1)正弦定理和余弦定理
        掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。
        (2)應(yīng)用
        能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的實際問題。

        12.數(shù)列
        (1)數(shù)列的概念和簡單表示法
        ①了解數(shù)列的概念和幾種簡單的表示方法(列表、圖像、通項公式)。
        ②了解數(shù)列的自變量為正整數(shù)的一類函數(shù)。
        (2)等差數(shù)列、等比數(shù)列
        ①理解等差數(shù)列、等比數(shù)列的概念。
        ②掌握等差數(shù)列、等比數(shù)列的通項公式與前n項和公式。
        ③能在具體的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題。
        ④了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系。

        13.不等式
        (1)不等關(guān)系
        了解現(xiàn)實世界和日常生活中的不等關(guān)系,了解不等式(組)的實際背景。
        (2)一元二次不等式
        ①會從實際情境中抽象出一元二次不等式模型。
        ②通過函數(shù)圖像了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系。
        ③會解一元二次不等式,對給定的一元二次不等式,會設(shè)計求解的程序。
        (3)二元一次不等式組與簡單線性規(guī)劃問題
        ①會從實際情境中抽象出二元一次不等式組。
        ②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組。
        ③會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決。
        (4)基本不等式:
        ①了解基本不等式的證明過程。
        ②會用基本不等式解決簡單的最大(小)值問題。

        14.常用邏輯用語
        (1)命題及其關(guān)系
        ①了解命題及其逆命題,否命題與逆否命題。
        ②理解必要條件、充分條件與充要條件的意義,會分析四種命題的相互關(guān)系。
        (2)簡單的邏輯聯(lián)結(jié)詞
        了解邏輯聯(lián)結(jié)詞“或”、“且”、“非”的含義。
        (3)全稱量詞與存在量詞
        ①理解全稱量詞與存在量詞的意義。
        ②能正確地對含有一個量間的命題進行否定。

        15.圓錐曲線與方程
        (1)圓錐曲線
        ①了解圓錐曲線的實際背景,了解圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用。
        ②掌握橢圓、拋物線的定義、幾何圖形、標準方程及簡單性質(zhì)。
        ③了解雙曲線的定義、幾何圖形和標準方程,知道它的簡單幾何性質(zhì)。
        ④了解圓錐曲線的簡單應(yīng)用。
        ⑤理解數(shù)形結(jié)合的思想。
        (2)曲線與方程
        了解方程的曲線與曲線的方程的對應(yīng)關(guān)系。

        16.空間向量與立體幾何
        (1)空間向量及其運算
        ①了解空間向量的概念,了解空間向量的基本定理及其意義,掌握空間向量的正交分解及其坐標表示。
        ②掌握空間向量的線性運算及其坐標表示。
        ③掌握空間向量的數(shù)量積及其坐標表示,能運用向量的數(shù)量積判斷向量的共線與垂直。
        (2)空間向量的應(yīng)用
        ①理解直線的方向向量與平面的法向量。
        ②能用向量語言表述直線與直線、直線與平面、平面與平面的垂直、平行關(guān)系。
        ③能用向量方法證明有關(guān)直線和平面位置關(guān)系的一些定理(包括三垂線定理)。
        ④能用向量方法解決直線與直線、直線與平面、平面與平面的夾角的計算問題,了解向量方法在研究幾何問題中的作用。

        17.導數(shù)及其應(yīng)用
        (1)導數(shù)概念及其幾何意義
        ①了解導數(shù)概念的實際背景。
        ②理解導數(shù)的幾何意義。
        (2)導數(shù)的運算
        ①能根據(jù)導數(shù)定義,求函數(shù) 的導數(shù)。
        ②能利用表1給出的基本初等函數(shù)的導數(shù)公式和導數(shù)的四則運算法則求簡單函數(shù)的導數(shù),能求簡單的復合函數(shù)(僅限于形如 )的導數(shù)。
        表1:常見基本初等函數(shù)的導數(shù)公式和常用導數(shù)運算公式。
          (C為常數(shù)); ;
         
        法則1  
        法則2  
        法則3  

        (3)導數(shù)在研究函數(shù)中的應(yīng)用
        ①了解函數(shù)單調(diào)性和導數(shù)的關(guān)系;能利用導數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間,對多項式函數(shù)一般不超過三次。
        ②了解函數(shù)在某點取得極值的必要條件和充分條件;會用導數(shù)求函數(shù)的極大值、極小值,對多項式函數(shù)一般不超過三次;會求閉區(qū)間上函數(shù)的最大值、最小值,對多項式函數(shù)一般不超過三次。
        (4)生活中的優(yōu)化問題
        會利用導數(shù)解決某些實際問題。
        (5)定積分與微積分基本定理
        ①了解定積分的實際背景,了解定積分的基本思想,了解定積分的概念。
        ②了解微積分基本定理的含義。

        18.推理與證明
        (1)合情推理與演繹推理。
        ①了解合情推理的含義,能利用歸納和類比等進行簡單的推理,了解合情推理在數(shù)學發(fā)現(xiàn)中的作用。
        ②了解演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。
        ③了解合情推理和演繹推理之間的聯(lián)系和差異。
        (2)直接證明與間接證明。
        ①了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點。
        ②了解間接證明的一種基本方法――反證法;了解反證法的思考過程、特點。
        (3)數(shù)學歸納法
        了解數(shù)學歸納法的原理,能用數(shù)學歸納法證明一些簡單的數(shù)學命題。

        19.數(shù)系的擴充與復數(shù)的引入
        (1)復數(shù)的概念
        ①理解復數(shù)的基本概念。
        ②理解復數(shù)相等的充要條件。
        ③了解復數(shù)的代數(shù)表示法及其幾何意義。
        (2)復數(shù)的四則運算
        ①會進行復數(shù)代數(shù)形式的四則運算。
        ②了解復數(shù)代數(shù)形式的加、減運算的幾何意義。

        20.計數(shù)原理
        (1)分類法計數(shù)原理、分步乘法計數(shù)原理
        ①理解分類加法計數(shù)原理和分類乘法計數(shù)原理;
        ②會用分類加法計數(shù)原理或分步乘法計數(shù)原理分析和解決一些簡單的實際問題。
        (2)排列與組合
        ①理解排列、組合的概念。
        ②能利用計數(shù)原理推導排列數(shù)公式、組合數(shù)公式。
        ③能解決簡單的實際問題。
        (3)二項式定理
        ①能用計數(shù)原理證明二項式定理。
        ②會用二項式定理解決與二項展開式有關(guān)的簡單問題。

        21.概率與統(tǒng)計
        (1)概率
        ① 理解取有限個值的離散型隨機變量及其分布列的概念,了解分布列對于刻畫隨機現(xiàn)象的重要性。
        ② 理解超幾何分布及其導出過程,并能進行簡單的應(yīng)用。
        ③ 了解條件概率和兩個事件相互獨立的概念,理解n次獨立重復試驗的模型及二項分布,并能解決一些簡單的實際問題。
        ④ 理解取有限個值的離散型隨機變量均值、方差的概念,能計算簡單離散型隨機變量的均值、方差,并能解決一些實際問題。
        ⑤ 利用實際問題的直方圖,了解正態(tài)分布曲線的特點及曲線所表示的意義。
        (2)統(tǒng)計案例
        了解下列一些常見的統(tǒng)計方法,并能應(yīng)用這些方法解決一些實際問題。
        ① 獨立檢驗
        了解獨立性檢驗(只要求2×2列聯(lián)表)的基本思想、方法及其簡單應(yīng)用。
        ② 假設(shè)檢驗
        了解假設(shè)檢驗的基本思想、方法及其簡單應(yīng)用。
        (3) 聚類分析
        了解聚類分析的基本思想、方法及其簡單應(yīng)用。
        (4) 回歸分析
        了解回歸的基本思想、方法及其簡單應(yīng)用。

        (二)選考內(nèi)容與要求
        1.幾何證明選講
        (1)了解平行線截割定理,會證直角三角形射影定理。
        (2)會證圓周角定理、圓的切線的判定定理及性質(zhì)定理。
        (3)會證相交弦定理、圓內(nèi)接四邊形的性質(zhì)定理與判定定理、切割線定理。
        (4)了解平行投影的含義,通過圓柱與平面的位置關(guān)系,了解平行投影;會證平面與圓柱面的截線是橢圓(特殊情形是圓)。
        (5)了解下面定理:
        定理 在空間中,取直線 為軸,直線 與 相交于點 ,其夾角為 圍繞 旋轉(zhuǎn)得到以 為頂點, 為母線的圓錐面,任取平面π,若它與軸 交角為 (π與 平行,記 =0),則:
        (i)   > ,平面π與圓錐的交線為橢圓;
        (ii)  = ,平面π與圓錐的交線為拋物線;
        (iii) < ,平面π與圓錐的交線為雙曲線。
        (6)會利用丹迪林(Dandelin)雙球(這兩個球位于圓錐的內(nèi)部,一個位于平面π的上方,一個位于平面的下方,并且與平面π及圓錐均相切)證明上述定理(i)情況。
        (7)會證明以下結(jié)果:
        (i) 在(6)中,一個丹迪林球與圓錐面的交線為一個圓,并與圓錐的底面平行,記這個圓所在平面為π';
        (ii)如果平面π與平面π'的交線為m,在(5)(i)中橢圓上任取一點A,該丹迪林球與平面π的切點為F,則點A到點F的距離與點A到直線m的距離比是小于1的常數(shù)e。(稱點F為這個橢圓的焦點,直線m為橢圓的準線,常數(shù)e為離心率。)
        (8)了解定理(5)(iii)中的證明,了解當β無限接近α時,平面π的極限結(jié)果。
        2.坐標系與參數(shù)方程
        (1)坐標系
        ① 理解坐標系的作用。
        ② 了解在平面直角坐標系伸縮變換作用下平面圖形的變化情況。
        ③ 能在極坐標系中用極坐標表示點的位置,理解在極坐標系和平面直角坐標系中表示點的位置的區(qū)別,能進行極坐標和直角坐標的互化。
        ④ 能在極坐標系中給出簡單圖形(如過極點的直線、過極點或圓心在極點的圓)的方程。通過比較這些圖形在極坐標系和平面直角坐標系中的方程,理解用方程表示平面圖形時選擇適當坐標系的意義。
        ⑤ 了解柱坐標系、球坐標系中表示空間中點的位置的方法,并與空間直角坐標系中表示點的位置的方法相比較,了解它們的區(qū)別。
        (2)參數(shù)方程
        ① 了解參數(shù)方程,了解參數(shù)的意義。
        ② 能選擇適當?shù)膮?shù)寫出直線、圓和圓錐曲線的參數(shù)方程。
        ③ 了解平擺線、漸開線的生成過程,并能推導出它們的參數(shù)方程。
        ④ 了解其他擺線的生成過程,了解擺線在實際中的應(yīng)用,了解擺線在表示行星運動軌道中的作用。

        3.不等式選講
        (1)理解絕對值的幾何意義,并能利用含絕對值不等式的幾何意義證明以下不等式:
        ①ㄏa+bㄏ≤ㄏaㄏ+ㄏbㄏ;
        ②ㄏa-bㄏ≤ㄏa-cㄏ+ㄏc-bㄏ;
        ③會利用絕對值的幾何意義求解以下類型的不等式:
        ㄏax+bㄏ≤c;
        ㄏax+bㄏ≥c;
        ㄏx-cㄏ+ㄏx-bㄏ≥a。
        (2)了解下列柯西不等式的幾種不同形式,理解它們的幾何意義,并會證明。
        ①柯西不等式向量形式:|α||β|≥|α•β|。
        ②  ≥ 。
        ③ + ≥
        (通常稱作三角不等式)。
        (3)會用參數(shù)配方法討論柯西不等式的一般情況: ≥ 。
        (4)會用向量遞歸方法討論排序不等式。
        (5)了解數(shù)學歸納法的原理及其使用范圍,會用數(shù)學歸納法證明一些簡單問題。
        (6)會用數(shù)學歸納法證明貝努利不等式:
         為大于1的正整數(shù)),了解當n為實數(shù)時貝努利不等式也成立。
        (7)會用上述不等式證明一些簡單問題。能夠利用平均值不等式、柯西不等式求一些特定函數(shù)的極值。
        (8)了解證明不等式的基本方法:比較法、綜合法、分析法、反證法、放縮法。

        Ⅲ.考試形式與試卷結(jié)構(gòu)
        考試采用閉卷、筆答形式,全卷滿分150分,考試時間120分鐘。
        試卷一般包括選擇題、填空題和解答題等題型。選擇題是四選一型的單項選擇題;填空題只要求直接寫結(jié)果,不必寫出計算過程或推證過程;解答題包括計算題、證明題和應(yīng)用題等,解答題應(yīng)寫出文字說明、演算步驟和推證過程。
        試卷包括容易題、中等題和難題,以中等題為主。
        試卷包括必做試題和選做試題。

         

         

         

        [標簽:理科 數(shù)學]

        分享:

        高考院校庫(挑大學·選專業(yè),一步到位!)

        高考院校庫(挑大學·選專業(yè),一步到位!)

        高校分數(shù)線

        專業(yè)分數(shù)線

        • 歡迎掃描二維碼
          關(guān)注高考網(wǎng)微信
          ID:gaokao_com

        • 👇掃描免費領(lǐng)
          近十年高考真題匯總
          備考、選科和專業(yè)解讀
          關(guān)注高考網(wǎng)官方服務(wù)號


        主站蜘蛛池模板: 亚洲免费一级片| 国模精品一区二区三区| 无码中文字幕色专区| 最新国产小视频在线播放| 欧美成人亚洲高清在线观看| 最近2019中文字幕mv免费看 | 男人进女人下面全黄大色视频| 波多野结衣未删减在线| 最近中文字幕在线中文高清版| 日本一卡2卡3卡4卡无卡免费| 大地资源在线资源官网| 国产浮力第一页草草影院| 又湿又紧又大又爽a视频| 亚洲国产精品综合福利专区| 久久久久国色av免费观看| 99视频精品全部在线播放| 香蕉精品一本大道在线观看| 一级二级三级毛片| 97日日碰人人模人人澡| 又大又粗又长视频| 免费一级国产大片| 九九电影院理论片| а√天堂资源官网在线8| 欧美h片在线观看| 福利视频你懂的| 最新国产精品自拍| 天天干天天操天天摸| 国产成人久久综合二区| 亚洲高清视频在线播放| 久久精品免费一区二区喷潮| WWW国产精品内射熟女| 野外做受又硬又粗又大视频| 正在播放黑人巨大视频| 成年女人18级毛片毛片免费| 国产男女爽爽爽免费视频| 免费在线观看中文字幕| 久久精品国产99久久| 99久久国产综合精品成人影院| 色老头成人免费综合视频| 欧美成人在线免费| 好大灬好硬灬好爽灬|